Responses of inferior colliculus neurons to double harmonic tones.
نویسندگان
چکیده
The auditory system can segregate sounds that overlap in time and frequency, if the sounds differ in acoustic properties such as fundamental frequency (f0). However, the neural mechanisms that underlie this ability are poorly understood. Responses of neurons in the inferior colliculus (IC) of the anesthetized chinchilla were measured. The stimuli were harmonic tones, presented alone (single harmonic tones) and in the presence of a second harmonic tone with a different f0 (double harmonic tones). Responses to single harmonic tones exhibited no stimulus-related temporal pattern, or in some cases, a simple envelope modulated at f0. Responses to double harmonic tones exhibited complex slowly modulated discharge patterns. The discharge pattern varied with the difference in f0 and with characteristic frequency. The discharge pattern also varied with the relative levels of the two tones; complex temporal patterns were observed when levels were equal, but as the level difference increased, the discharge pattern reverted to that associated with single harmonic tones. The results indicated that IC neurons convey information about simultaneous sounds in their temporal discharge patterns and that the patterns are produced by interactions between adjacent components in the spectrum. The representation is "low-resolution," in that it does not convey information about single resolved components from either individual sound.
منابع مشابه
Prevalence of stereotypical responses to mistuned complex tones in the inferior colliculus.
The human auditory system has an exceptional ability to separate competing sounds, but the neural mechanisms that underlie this ability are not understood. Responses of inferior colliculus (IC) neurons to "mistuned" complex tones were measured to investigate possible neural mechanisms for spectral segregation. A mistuned tone is a harmonic complex tone in which the frequency of one component ha...
متن کاملComparison of responses of neurons in the mouse inferior colliculus to current injections, tones of different durations, and sinusoidal amplitude-modulated tones.
We made in vivo whole cell patch-clamp recordings from the inferior colliculus of young-adult, anesthetized C57/Bl6 mice to compare the responses to constant-current injections with the responses to tones of different duration or to sinusoidal amplitude-modulated (SAM) tones. We observed that voltage-dependent ion channels contributed in several ways to the response to tones. A sustained respon...
متن کاملTemporal damping in response to broadband noise. I. Inferior colliculus.
Many cells in the inferior colliculus (IC) are sensitive to interaural time differences (ITDs), in the form of an oscillatory dependency of average firing rate on ITD. We studied the degree of damping in such binaural responses, recording from neurons in the inferior colliculus of pentobarbital-anesthetized cats to binaural broadband noise and tones. Noise-delay functions and composite curves w...
متن کاملIntracellular responses to frequency modulated tones in the dorsal cortex of the mouse inferior colliculus
Frequency modulations occur in many natural sounds, including vocalizations. The neuronal response to frequency modulated (FM) stimuli has been studied extensively in different brain areas, with an emphasis on the auditory cortex and the central nucleus of the inferior colliculus. Here, we measured the responses to FM sweeps in whole-cell recordings from neurons in the dorsal cortex of the mous...
متن کاملNeural sensitivity to periodicity in the inferior colliculus: evidence for the role of cochlear distortions.
Responses of low characteristic-frequency (CF) neurons in the inferior colliculus were obtained to amplitude-modulated (AM) high-frequency tones in which the modulation rate was equal to the neuron's CF. Despite all spectral components lying outside the pure tone-evoked response areas, discharge rates were modulated by the AM signals. Introducing a low-frequency tone (CF - 1 Hz) to the same ear...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 98 6 شماره
صفحات -
تاریخ انتشار 2007